Spiking neural networks

To say that artificial neural networks are having their day in the sun is an understatement. Commonly called just neural networks, you can’t glance at a news source without seeing some reference to artificial intelligence (AI), a term that has become synonymous with the statistical models known as artificial neural networks.

(I hasten to add that neural networks and artificial intelligence are distinct things.  Originally, the latter was a target, in the same way that 5G is a target for telecommunications, which you can reach using whichever means that allow you. Someone may say they are using artificial intelligence, but the models in use may be other statistical or machine learning models, of which there are plenty. At any rate, it now seems artificial neural networks are ahead of the pack.)

From performing language and image tasks to generating and composing artistic (or stochastic?) works, neural networks are impressive in what they can do.

But can these statistical models be better? And so they really work like the brain?

Brain-lite neural networks

Artificial neural networks, dreamt up in the 1940s and 1950s, were inspired by how brains work. But they only grew inspiration from the firing of neurons in brains. These statistical models behave differently to the grey matter that forms our brains. And we can see that by how differently they perform in terms of learning speed and energy usage.

Artificial neural networks require a lot of material to learn anything. The amount of data that is needed to teach or train a state-of-the artificial neural network to learn, say, basic natural language skills is equivalent to a human spending thousands of years being exposed to language. Clearly we are the faster learners.

These statistical models also consume vast amounts of energy for training and running. Our brains just fire along, doing incredibly impressive and diverse things day after day, while using energy at a rate too low to boil a cup of water.

So the question arises: Why don’t we make artificial neural networks more like our brains? Well, historically, the short answer is that these statistical models are nice.

What’s nice about artificial neural networks?

Typically artificial neural networks are specifically built to have two convenient properties. Linearity and continuity.

Linearity

Mathematically, linearity is great because it means you can pull things apart, do stuff, and then put it together without losing or gaining anything. In short, things add up. Matrices are linear operators, and neural networks are essentially just a series of very large matrices coupled together.

Continuity

Continuity is also a wonderfully tractable property. It means that if you adjust  something slightly, then the degree of change will be limited, well, continuous. There will be no jumps or gaps. Things will run smoothly. That means you can find gradients (or derivatives) of these models by performing, say, backpropagation. And that in turn allows the use of optimization functions, which often use gradients to take educated gaps in which way to walk to find maximum or minimum points of continuous functions.

How neurons fire

In the brains, neurons do fire not continuously, but in so-called spikes. In other words, the electrical currents coursing through brain neurons are not steady flow, but consist of series of current spikes. So we see that any continuity assumption in any model of the brain does not reflect reality.

The electrical workings of neurons have motivated researchers to propose  mathematical models for describing the flow of currents in the brain. One historically significant model is the Hodgkin-Huxeley model, whose proposal led to its developers to share the Nobel Prize in Medicine. This model gives us a not-so-nice nonlinear set of differential equations, which you may encounter in a course on solving such differential equations numerically.

The Hodgkin-Huxeley model is a complex model, perhaps needlessly complex in certain cases. Consequently, recalling the law of parsimony in statistics (which artificial neural networks routinely laugh at), researchers, often use other simpler models, such as the leaky integrate-and-fire model.

Brain-heavy neural networks

A relatively small number of researchers are working away at creating neural networks that more closely resemble brains. Much of these models hinge upon using spikes, giving rise to statistical models called spiking neural networks.

These neural networks are, strictly speaking, still artificial, being closely related to recurrent neural networks, a popular type of artificial neural network. But the aim is that these statistical models more closely resemble how brains do their magic.

Where are they?

The big problem of spiking neural networks is training (or fitting) them. The inherent lack of continuity in these networks means you can’t use your favourite gradient-based methods.  Unlike regular network models, that means you can’t do the forward pass, collecting key values along the way, and then do the backward pass, yielding the gradients.

In lieu of this, researchers have proposed other methods, such as approximating the discontinuous functions in spiking neural networks with continuous ones, but then you can find the gradients of these functions, giving you surrogate derivatives, and use them to train the model.

It sounds not quite legit. Using one function to infer something about another function. But some papers seems to suggest there is promise in this approach.

Still, spiking neural networks are a long way from the fame that their continuous cousins enjoy.

Software and hardware

So far I have only covered the model or theory aspects of this statistical model seeking to replicate the brain’s performance. You can liken that to just talking about the software. That’s my leaning, but idea of creating more brainy neural networks has led to hardware too.

Some companies, such as Intel, are now designing and manufacturing computer processors or chips that seek to mimic how the brain works. But the challenge remains in reconciling software and hardware. That’s because proposed software methods may not be suitable for hardware being designed and made.

Further reading

There are some survey papers on this topic, including:

Update: Here’s a more recent survey paper:

(Visited 126 times, 1 visits today)

Leave a Reply

Your email address will not be published. Required fields are marked *