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Abstract

Ren [11] considered the problem of deriving the Laplace trans-
form of the aggregate discounted claims in a fixed time period when
claims occur according to a Markovian arrival process. Using a mar-
tingale argument, he characterized the matrix of Laplace transforms
as a solution to a matrix linear differential equation, and then gave
the solution. In this note, we point out that the proposed solution of
this differential equation is incorrect. It can, however be thought of
as a first-order approximation, which appears to be rather accurate.

1 Introduction

Random sums or aggregates are naturally of interest in both actuarial
studies and in applied mathematics more generally. Hence there is a
strong need for analytic and numerical techniques to evaluate them.
Ren [11] presented an appealing model for the aggregate discounted
claims in a fixed time period under the assumption that claims occur
according to a Markovian arrival process.

He studied a model where claims of size {Xk, k ≥ 1} occur at a
sequence of times {Tk, k ≥ 1}. Assuming that a claim occurring at
time t is discounted by a factor ν(t) such that 0 ≤ ν(t) ≤ 1, the
aggregate of the discounted claims at time t is given by the random
sum

S(t) =

N(t)∑
k=1

Xkν(Tk), (1)

with the counting process {N(t),≥ t} giving the number of claims in
the interval (0, t].
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Claims were assumed to occur according to a Markovian arrival
process (N(t), J(t)) with underlying phase space {1, . . . ,m} and rep-
resentation (γ,D0,D1). These point processes, originally introduced
as versatile Markovian point processes by Neuts [10], considerably gen-
eralize the Poisson point process, explaining their wide use in stochas-
tic models [1, 7]. Ren [11] assumed also that the distribution of the
claim size Xk depends on J(Tk), having distribution Pi, density pi
and Laplace transform p̂(s) =

∫∞
0 pi(x)e−sxdx when J(Tk) = i. Con-

sequently, Ren’s model for the aggregate S(t) can be thought of as a
useful and potentially tractable generalization of classical models, as
remarked upon by Li [8] and Shiu [13].

2 The Laplace transform as a solution

of a matrix differential equation

For i, j = 1, 2, . . . ,m, define the Laplace transform

Li, j(ξ, t) = Ei[e
−ξS(t)1(J(t) = j)], (2)

where Ei denotes the conditional expectation given {J(0) = i} and 1

is an indicator function. Let L(ξ, t) be a matrix with i, jth element
Li, j(ξ, t). Furthermore, let ∆p̂(ξ, t) denote a diagonal matrix with
p̂i(ξν(t)) as the i th diagonal element.

Ren used an elegant martingale argument to derive the matrix
differential equation [11, Equation (2.7)]

∂L(ξ, t)

∂t
= L(ξ, t)[∆p̂(ξ, t)D1 + D0] (3)

with initial condition L(ξ, 0) equal to the identity matrix I. He then
stated that the solution to (3) is [11, Equation (2.8)]

L(ξ, t) = exp

[∫ t

0
∆p̂(ξ, s)dsD1 + D0t

]
. (4)

Although there is is a unique solution to the differential equation (3),
this solution is not given by (4). It follows that Theorem 2.1 in [11] is
not correct.

The intuitive reason for the fact that (4) does not solve (3) is
that the integrand in

∫ t
0 [∆p̂(ξ, s)D1 + D0] ds, which leads to the the

exponential term on the right hand side of (4), does not necessarily
commute for different values of s. Put another way, for a square matrix
B(t), in general

d

dt
[exp B(t)] 6= dB(t)

dt
[exp B(t)]. (5)
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The proposed solution (4) holds if ∆p̂(ξ, s)D1 + D0 commutes for all
s ∈ (0, t], which is clearly the case if ∆p̂(ξ, s) is independent of s, but
is not true in general.

The majority of the further results in [11] were derived via manip-
ulation of the original differential equation (3), and not the proposed
solution (4), and we have no reason to doubt these.

3 Expansion techniques

Matrix differential equations of the form

dY(t)

dt
= A(t)Y(t), (6)

have long been of interest in physics, engineering, and applied math-
ematics, particularly when a problem can be recast as a linear model.
As we mentioned above, this equation has a unique solution, but there
is no simple closed-form unless very specific conditions are satisfied.
See, for example, Gantmacher [4, Chapter XIV] for a detailed exposi-
tion on the theory of such equations.

Numerous expansion or series methods have been proposed for ap-
proximating a solution this equation, and there seems to be a divide
between research communities according to which methods they pre-
fer. Baake and Schlägel [2] observed that Peano-Baker series are used
mostly in engineering books, for example [12, Chapter 3]. Other ex-
pansion methods, such as that proposed by Magnus [9], appear mostly
in a physics setting; for a thorough survey on Magnus and related ex-
pansions; see the survey by Blanes et al. [3], where it is shown that
the first term in the the different expansion methods often coincide.
Another approach for numerically calculating the solution involves a
method known as multiplicative or product integration, which involves
taking the limit of infinite products [4, Chapter XIV §6]; also see Gill
and Johansen [5].

We focus on the Magnus expansion because the proposed solution
(4) turns out to be the first term in this expansion, which in gen-
eral needs a (possibly infinite) number of terms. To introduce the
expansion technique, we use the Lie bracket [·, ·], defined by [A,B] =
AB−BA for two matrices A and B of equal size.

Theorem 1 (Magnus 1954). Let A(t) be a known matrix function
of t, and let Y(t) be an unknown matrix function that satisfies the
differential equation (6), with initial condition Y(0) = I. If certain
unspecified convergence conditions are met, then Y(t) can be written
in the form

Y(t) = eΩ(T ), (7)
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where the matrix function Ω(t) has the first terms

Ω(t) =

∫ t

0
A1dt1 (8)

− 1

2

∫ t

0
dt1

∫ t1

0
dt2[A1,A2] (9)

+
1

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ([A1, [A2,A3]] + [[A1,A2],A3])

(10)

with Ai := A(ti).

This expansion has been employed, particularly in physics, often
with relatively little understanding of conditions for convergence [6].
The calculation of each term, unfortunately, soon becomes unwieldy,
although some recursive procedures exist for generating the terms [3,
Section 2.3].

4 Counterexamples

In this section we present the results of some numerical experimen-
tation for some cases where there are three phases in the underlying
Markovian arrival process and where the claim sizes are exponentially
distributed with rates µ1 = 1, µ2 = 2 and µ3 = 3 so that

∆p̂(ξ, t) =


1

1+ξe−δt
0 0

0 2
2+ξe−δt

0

0 0 3
3+ξe−δt

 . (11)

We evaluated solutions of the differential equation (3) with standard
numerical (Runge-Kutta) techniques in Matlab and compared the re-
sults to those given by expression (4). When

D0 = 2

−4 1 5
−7 1 0
0 2 −5

 , D1 = 2

1 0 2
0 1 0
1 1 1

 , (12)

ξ = 1, δ = 10 and t ∈ [0.13, 0.5], the values of the nine entries of
the matrix Li, j(ξ, t), calculated according to the numerical solution of
(3) and via expression (4), are plotted in Figure 1. We see that the
functions do not coincide.

It proved to be surprisingly difficult to construct an example in
which the difference between the functions calculated by solving (3)
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Figure 1: The proposed analytic and numerical solutions for ξ = 1 and δ = 10
when D0 and D0 are given by (12).

and via expression (4) was discernible. For example, with the same
values of ξ and δ,

D0 =
1

2

−4 1 5
−7 1 0
0 2 −5

 , D1 =
1

2

1 0 2
0 1 0
1 1 1

 , (13)

the two functions are almost indistinguishable over the interval t ∈
[0, 1], see Figure 2. This leads us to speculate that there is a good
reason why the first order term (4) in the Magnus expansion is a good
approximation of the full solution of the differential equation (3). We
make some comments in this direction in the next section.

5 Conclusion

We have pointed out an error in the solution of the matrix differential
equation (3). Despite the solution being incorrect, it was difficult for
us to produce a counter example where the claimed analytical solution
(4) differed substantially from the solution of the differential equation
(3). The following argument gives some intuition as to why this should
be so.

The integral version of the differential equation (3), which can be
derived by an argument analogous to Ren’s, is

L(ξ, t)− I =

∫ t

0
L(ξ, u)[∆p̂(ξ, u)D1 + D0]du. (14)
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Figure 2: The proposed analytic and numerical solutions for ξ = 1 and δ = 10
when D0 and D0 are given by (13).

In the practical case where the discount factor is monotonically de-
creasing with t with limt→∞ v(t) = 0, we observe that ∆1 ≡ ∆p̂(ξ, 0) ≤
∆p̂(ξ, t) ≤ ∆p̂(ξ,∞) = I. Taking the non-negativity of D1 into ac-
count, we see that the right hand side of equation (14) is bounded
above by ∫ t

0
L(ξ, u)[D1 + D0]du, (15)

and below by ∫ t

0
L(ξ, u)[∆1D1 + D0]du, (16)

and (14) implies that

exp([∆p̂(ξ, 0)D1 + D0]]t) ≤ L(ξ, t) ≤ exp([D1 + D0] t). (17)

If the upper and lower bounds (15) and (16) are close as, for example,
they are likely to be when ξ is large, we have an explanation of why
expression (2.8) of Ren’s paper provides a good approximation for the
solution of the differential equation (3).
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