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Abstract

A stochastic process is a type of mathematical object studied in mathemat-
ics, particularly in probability theory, which can be used to represent some type
of random evolution or change of a system. There are many types of stochastic
processes with applications in various fields outside of mathematics, including
the physical sciences, social sciences, finance and economics as well as engineer-
ing and technology. This survey aims to give an accessible but detailed account
of various stochastic processes by covering their history, various mathematical
definitions, and key properties as well detailing various terminology and appli-
cations of the process. An emphasis is placed on non-mathematical descriptions
of key concepts, with recommendations for further reading.

1 Introduction
In probability and related fields, a stochastic or random process, which is also
called a random function, is a mathematical object usually defined as a collection
of random variables. Historically, the random variables were indexed by some
set of increasing numbers, usually viewed as time, giving the interpretation of a
stochastic process representing numerical values of some random system evolv-
ing over time, such as the growth of a bacterial population, an electrical current
fluctuating due to thermal noise, or the movement of a gas molecule [120, page
7][51, page 46 and 47][66, page 1]. Stochastic processes are widely used as math-
ematical models of systems and phenomena that appear to vary in a random
manner. They have applications in many disciplines including physical sciences
such as biology [67, 34], chemistry [156], ecology [16][104], neuroscience [102],
and physics [63] as well as technology and engineering fields such as image and
signal processing [53], computer science [15], information theory [43, page 71],
and telecommunications [97][11][12]. Furthermore, seemingly random changes
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in financial and other markets have motivated the extensive use of stochastic
processes in finance [146][162][118][142].

Applications and the study of phenomena have in turn inspired the proposal
of new stochastic processes. Two examples include the Wiener process or Brown-
ian motion process 1, used by Louis Bachelier to study price changes on the Paris
Bourse [84], and the Poisson process, proposed by A.K. Erlang to study the num-
ber phone calls occurring in a certain period of time [147]. These two stochastic
processes are considered the most important and central in the theory of stochas-
tic processes [120, page 8][144, page 32][58, page 99][147], and were discovered
repeatedly and independently in different settings and countries, both before and
after Bachelier and Erlang [84][147][73].

The terms “stochastic process” and “random process” are used interchange-
ably, often with no specific index set [5, page 7][148, page 45][39, page 175][128,
page 91][87, page 24]. But often these two terms are used when the index set
is, for example, the integers or an interval [17, page 1][66, page 1][71, page 1][39,
page 175]. If the index set is n-dimensional Euclidean space, then the collection of
random variables is usually called a “random field” instead [103, page 1][66, Page
1][5, page 7][143, page 42]. The term“random function” is also used [112, 163][71,
page 21][143, page 42], because a stochastic process can also be interpreted as a
random element in a function space [87, page 24][103, page 2]. Furthermore, the
values of a stochastic process are not always numbers and can be vectors or other
mathematical objects [103, page 1][66, page 1][33, page 120][51, Page 47][60, page
294].

Based on their properties, stochastic processes can be divided into various
categories, which include random walks [107], martingales [161], Markov pro-
cesses [126], Lévy processes [7], random fields [4], and Gaussian processes [109],
as well as renewal processes, branching processes, and point processes [89][47].
The study of stochastic processes requires mathematical techniques from proba-
bility, calculus, linear algebra, set theory, and topology [78][105][64][48] as well
as branches of mathematical analysis such as measure theory, Fourier analysis,
and functional analysis [23][33][29]. The theory of stochastic processes is con-
sidered to be a very important contribution to mathematics [8, Page 1336] and it
continues to be an active topic of research for both theoretical reasons and appli-
cations [28][151, see Preface][34, see Preface].

1The term “Brownian motion” can refer to the physical process, also known as “Brownian move-
ment”, and the stochastic process, a mathematical object, but to avoid ambiguity this article uses the
terms “Brownian motion process” or “Wiener process” for the latter in a style similar to, for example,
Gikham and Skorokhod [66] or Rosenblatt [128].
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2 Definitions

2.1 Stochastic process
A stochastic or random process is a collection of random variables that is indexed
by or depends on some mathematical set [120, page 7][66, page 1]. More formally,
a stochastic process is defined as a collection of random variables defined on
a common probability space (Ω,F , , P ), where Ω is a sample space, F is a σ-
algebra, and P is a probability measure, and the random variables, indexed by
some set T , all take values in the same mathematical space S, which must be
measurable with some σ-algebra Σ [103, page 1].

In other words, for a given probability space (P,F ,Ω) and a measurable space
(S,Σ), a stochastic process is a collection of S-valued random variables, which
can be written as [60, page 293]:

{X(t) : t ∈ T}.

Historically, in many problems from the natural sciences a point t ∈ T had
the meaning of time, soX(t) is random variable representing a value observed at
time t[31, page 528]. A stochastic process can also be written as {X(t, ω) : t ∈ T},
reflecting that is function of the two variables, t ∈ T and ω ∈ Ω [103, page 2][110,
page 11].

There are others ways to consider a stochastic process, but the above defini-
tion is considered the traditional one [126, page 121 and 122][9, page 408]. For
example, a stochastic process can be interpreted as a ST -valued random variable,
where ST is the space of all the possible S-valued functions of t ∈ T that map
from the set T into the space S [126, pages 122][87, page 24 and 25].

2.2 Index set
The set T is called the index set [120, page 7][60, page 294] or parameter set[103,
page 1][143, page 93] of the stochastic process. Historically, this set was some
subset of the real line, such as the natural numbers 2 or an interval, giving the
set T the interpretation of time [51, pages 46 and 47]. In addition to these sets,
the index set T can be other linearly ordered sets or more general mathematical
sets [51, pages 46 and 47] [23, page 482], such as the Cartesian plane R2 or n-
dimensional Euclidean space, where an element t ∈ T can represent a point in
space [144, page 25][89, page 27]. But in general more results and theorems are
possible for stochastic processes when the index set is ordered [143, page 104].

2In this article the natural numbers start at zero, so they are 0, 1, 2, 3, . . . , and so forth.
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2.3 State space
The mathematical space S is called the ”state space” of the stochastic process.
The exact of mathematical spaces varies and it can be many mathematical objects
including the integers, the real line, n-dimensional Euclidean space, the complex
plane or other mathematical spaces, which reflects the different values that the
stochastic process can take [103, page 1][66, page 1][33, page 120][51, Page 47][60,
page 294].

2.4 Sample function
A sample function is a single outcome of a stochastic process, so it is formed
by taking a single possible value of each random variable of the stochastic pro-
cess [103, page 2][60, page 296]. More precisely, if {X(t, ω) : t ∈ T} is a stochastic
process, then for any point ω ∈ Ω, the mapping

X(·, ω) : T → S,

is called a sample function, a realization, or, particularly when T is interpreted
as time, a sample path of the stochastic process {X(t, ω) : t ∈ T} [126, pages 121
to 124]. This means that for a fixed ω ∈ Ω, there exists a sample function that
maps the index set T to the state space S [103, page 2]. Other names for a sample
function of a stochastic process include trajectory, path function [23, page 493] or
path [119, page 10].

3 Notation
A stochastic process can be written, among other ways, as {X(t)}t∈T [33, page
120], {Xt}t∈T [9, page 408], {Xt}[103, page 3], {X(t)} or simply as X or X(t),
although X(t) is regarded as an abuse of notation [95, page 55]. For example,
X(t) or Xt are used to refer to the random variable with the index t, and not the
entire stochastic process [103, page 3]. If the index set is T = [0,∞), then one can
write the stochastic process as, for example, (Xt, t ≥ 0) [39, page 175].

4 Classifications
A stochastic process can be classified in different ways, for example, by its state
space, its index set, or the dependence among the random variables. One com-
mon way of classification is by the cardinality of the state space and index set [89,
page 26] [60, page 294][144, pages 24 and 25].
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4.1 Based on index set
Although the index set T can be quite general, traditionally it was assumed to
be a subset of the real line, so it can be interpreted as time [51, pages 46 and 47].
In this case, if the index set T of a stochastic process has a finite or countable
number of elements, such as a finite set of numbers, the set of integers, or the
natural numbers, then the stochastic process is said to be in discrete time [23,
page 482][31, page 527]. If the index set T is some interval of the real line, then
time is said to be continuous. The two corresponding processes are referred to
as discrete-time or continuous-time stochastic processes [89, page 26][33, page
120][129, page 177].

Discrete-time stochastic processes are considered easier to study because continous-
time processes require more advanced mathematical techniques and knowledge,
particularly due to the index set being uncountable [99, page 63][93, page 153]. If
the index set is the integers, or some subset of them, then the stochastic process
can also be called a random sequence[31, page 527].

4.2 Based on state space
If the state space S is the integers or natural numbers, such that S = . . . ,−2,−1, 0, 1, 2, . . .
or S = 0, 1, 2, . . . , then the stochastic process is called a discrete or integer-valued
process. If the state space is the real line, so S = (−∞,∞), then the stochastic
process is referred to as a real-valued stochastic process or a stochastic process
with continuous state space. If the state space is n-dimensional Euclidean space,
so S = Rn, then the stochastic process is called a n-dimensional vector process or
n-vector process [60, page 294][89, page 26].

5 Examples of stochastic processes

5.1 Bernoulli process
One of the simplest stochastic processes is the Bernoulli process[60, page 293],
which is a sequence of independent and identically distributed (iid) random vari-
ables, where each random variable takes either the value one with probability,
say, p and value zero with probability 1− p. This process can be likened to some-
body flipping a coin, where the probability of obtaining a head is p and its value
is one, while the value of a tail is zero [60, page 301]. In other words, a Bernoulli
process is a sequence of iid Bernoulli random variables [138, page 3][68, page 8],
where each coin flip is a Bernoulli trial[82, page 11].
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5.2 Random walk
Random walks are stochastic processes that are usually defined as sums of iid
random variables or random vectors in Euclidean space, so they are processes
that change in discrete time [98, page 347][107, page 1][87, page 136][60, page
383][55, page 277]. But some also use the term to refer to processes that change
in continuous time [158], particularly the Wiener process used in finance, which
has led to some confusion, resulting in criticism [145, page 454]. There are other
various types of random walks, defined on different mathematical objects, such
as lattices and groups, and in general they are highly studied and have many
applications in different disciplines [158][95, page 81].

A classic example of a random walk is known as the ”simple random walk”,
defined on the integers in discrete time, and is based on a Bernoulli process,
where each iid Bernoulli variable takes either the value positive one or negative
one. In other words, the simple random walk increases by one with probability,
say, p, or decreases by one with probability 1−p, so index set of this random walk
is the natural numbers, while its state space is the integers. If the p = 0.5, this
random walk is called a symmetric random walk [72, page 88][68, page 71].

5.3 Wiener process
The Wiener process is a stochastic process with stationary and independent incre-
ments that are normally distributed based on the size of the increments[126, page
1][95, page 56]. The Wiener process is named after Norbert Wiener, who proved
its mathematical existence, but the process is also called the Brownian motion
process or just Brownian motion due to its historical connection as a model for
Brownian movement in liquids, a physical phenomenon originally observed by
Robert Brown [38][8][66, page 21].

Playing a central role in the theory of probability, the Wiener process is often
considered the most important and studied stochastic process, with connections
to other stochastic processes [120, page 8][126, page 1][60, page471][89, pages 21
and 22][88, Preface][125, page IX][146, page 29]. Its index set and state space
are the non-negative numbers and real numbers, respectively, that is T = [0,∞)
and S = [0,∞), so it has both continuous index set and states space [129, page
186]. But the process can be defined more generally so its state space can be
n-dimensional Euclidean space [89, pages 21 an 22][144, page 33][95, page 81].

A sample path of a Wiener process is continuous almost everywhere, but it
is not differentiable with probability one. It can be considered a continuous ver-
sion of the simple random walk [117, page 1 and 3][8]. The process arises as the
mathematical limit of other stochastic processes such as certain random walks
rescaled [88, page 61][142, page 93], which is the subject of Donsker’s theorem
or invariance principle, also known as the functional central limit theorem [87,
pages 225 and 260][88, page 70][117, page 131].
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The Wiener process is a member of some important families of stochastic pro-
cesses, including Markov processes, Lévy processes and Gaussian processes [126,
page 1][8]. The process also has many applications and is the main stochastic
process used in stochastic calculus [95][88]. It plays a central role in quantitative
finance [8][89, page 340], where it was used, for example, in the Black-Scholes-
Merton model [95, page 124]. The process is also used in different fields, includ-
ing the majority of physical sciences as well as some branches of social sciences,
as a mathematical model for various random phenomena [88, page 47][160, page
2][page 29][146].

5.4 Poisson process
The Poisson point process, or often just the Poisson process[94], is a stochastic
process that has different forms and definitions [152, pages 1 and 2][47, Chapter
2]. It can be defined as a counting process, which is a process that represents the
random number of points or events up to some time. The number of points of
the process that are located in some interval from zero to some time is a Poisson
random variable. This process, which is also called Poisson counting process, has
the natural numbers as its state space and the non-negative numbers as its index
set, so S = 0, 1, 2, . . . and T = [0,∞) [152, pages 1 and 2].

If a Poisson process is defined with a single positive constant, then the process
is called a homogeneous Poisson process [152, pages 1 and 2][121, page 241]. The
homogeneous Poisson process (in continuous time) is a member of important
classes of stochastic processes such as Markov processes and Lévy processes [8].

The homogeneous Poisson process can be defined in different ways. It can be
defined on the real line, so the index set T = (−∞,∞), and this stochastic pro-
cess is also called the stationary Poisson process [94, page 38][47, page 19]. If the
parameter constant of the Poisson process is replaced with some non-negative
integrable function of t, the resulting process is called an inhomogeneous or non-
homogeneous Poisson process, where the average density of points of the process
is no longer constant [94, page 22]. Serving as a fundamental process in queue-
ing theory, the Poisson process is an important process for mathematical models,
where it finds applications for models of events randomly occurring in certain
time windows[89, pages 118 and 119][96, page 61].

Defined on the real line, the Poisson process can be interpreted as a stochastic
process [8][128, page 94], among other random objects [74, page 10 and 18][40,
page 41 and 108]. But the Poisson point process can be defined on the n-dimensional
Euclidean space or other mathematical spaces [94, page 11], where it is then of-
ten interpreted as a random set or a random counting measure [74, page 10 and
18][40, page 41 and 108]. The Poisson point process is one of the most important
objects in probability theory, both for applications and theoretical reasons[147][149,
page 1]. But it has been remarked that the Poisson process does not receive as
much attention as it should, partly due to it often being considered just on the
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real line, and not on other mathematical spaces [94, Preface][149, page 1].

5.5 Markov processes and chains
Markov processes are stochastic processes, traditionally in discrete or continuous
time, that have the Markov property, which means the next value of the Markov
process depends on the current value, but it is conditionally independent of the
previous values of the stochastic process. In other words, the behavior of the
process in the future is stochastically independent of its behavior in the past,
given the current state of the process [138, page 2][131, Preface].

The Brownian motion process and the Poisson process (in one dimension) are
both examples of Markov processes[130, pages 235 and 358]. These two processes
are Markov processes in continuous time, while random walks on the integers
and the Gambler’s ruin problem are examples of Markov processes in discrete
time [60, pages 373 and 374][89, page 49].

A Markov chain is a type of Markov process that has either discrete state
space or discrete index set (often representing time), but the precise definition of
a Markov chain varies [9, page 7]. For example, it is common to define a Markov
chain as a Markov process in either discrete or continuous time with count-
able state spaces. In other words, this definition implies that Markov chains are
Markov processes with discrete state spaces regardless of the nature of time [120,
page 188][89, pages 29 and 30][103, Chapter 6][130, pages 174 and 231]. But it is
also common to define a Markov chain as having discrete time regardless of the
state space [9, page 7].

Markov processes form an important class of stochastic processes and have
applications in many areas [89, page 47][105]. For example, they are the basis for
a general stochastic simulation method known as Markov Chain Monte Carlo,
which is used for simulating random objects with specific probability distribu-
tions, and has found extensive application in Bayesian statistics [132, page 225].

The concept of the Markov property was originally for stochastic processes
in continuous and discrete time, but the property has been adapted for other
index sets, such as n-dimensional Euclidean space, which results in collections
of random variables known as Markov random fields [131, Preface][144, page
27][32, page 253].

5.6 Martingales
Martingale are discrete-time or continuous-time stochastic processes with the
property that the expectation of the next value of a martingale is equal to the
current value given all the previous values of the process. The exact mathemat-
ical definition of a martingale requires two other conditions coupled with the
mathematical concept of a filtration, which is related to the intuition of increas-
ing available information as time passes. Martingales are usually defined to be
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real-valued [95, page 65][88, page 11][161, pages 93 and 94], but they can also be
complex-valued [51, pages 292 and 293] or even more general [122].

A symmetric random walk and Wiener process are both examples of martin-
gales, respectively, in discrete and continuous time [88, page 11][95, page 65]. For
a sequence of independent and identically distributed random variablesX1, X2, X3, . . .
with zero mean, the stochastic process formed from the successive partial sums
X1, X1 + X2, X1 + X2 + X3, . . . is a discrete-time martingale [146, page 12]. In
this aspect, discrete-time martingales generalize the idea of partial sums of inde-
pendent random variables [77, page 2].

Martingales can also be created from stochastic processes by applying some
sutiables transformations, which is the case for the homogeneous Poisson pro-
cess (on the real line) resulting in a martingale called the compensated Poisson
process [88, page 11]. Martingales can also be built from other martingales [146,
pages 12 and 13]. For example, there are two known martingales based on the
martingale the Wiener process, forming in total three continuous-time martin-
gales [95, page 65][146, page 115].

Martingales mathematically formalize the idea of a fair game [130, page 295],
and they were originally developed to show that it is not possible to win a fair
game[146, page 11]. But now they are used in many areas of probability, which
is one of the reasons they are studied [161, page 94][87, page 96][146, page 11].
Many problems in probability have been solved by finding a martingale in the
problem and studying it [139, page 371]. Generally speaking, discrete-time mar-
tingales are more intuitive and knowledge of them is required to understand
continuous-time martingales [126, page 163]. Martingales will converge, given
some conditions on their moments, so they are often used to derive convergence
results, due largely to martingale convergence theorems [146, page ][77, page
2][68, 336].

Martingales have many applications in certain areas of probability theory
such as queueing theory and Palm calculus [13] and other fields such as eco-
nomics [77, page x] and finance [118]. Martingales also have applications in
statistics, but it has been remarked that its use and application are not as widespread
as it could be in the field of statistics, particularly statistical inference [80, pages
292 and 293].

5.7 Lévy processes
Lévy processes are types of stochastic processes that can be considered as gen-
eralizations of random walks in continuous time [8][21, see Preface]. These pro-
cesses, which are also called Lévy flights in physics, have many applications in
fields such as finance, fluid mechanics, physics and biology [8][7, page 69]. The
main defining characteristic of these processes is their stationarity property, so
they were known as ”processes with stationary and independent increments”. In
other words, for n non-negatives numbers, 0 ≤ t1 ≤ · · · ≤ tn, the corresponding
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n− 1 increments
Xt2 −Xt1 , . . . , Xtn−1 −Xtn ,

are all independent of each other, and the distribution of each increment only
depends on the difference in time [8].

A Lévy process can be defined such that its state space is some abstract math-
ematical space, such as a Banach space, but the processes in general are often
defined so that they take values in Euclidean space. The index set is the real line,
which gives the interpretation of time. Important stochastic processes such as the
Wiener process, the homogeneous Poisson point process (in one dimension), and
subordinators are all Lévy processes [8][21, Preface].

5.8 Random fields
A random field is a collection of random variables indexed by a n-dimensional
Euclidean space or some manifold. In general, a random field can be considered
an example of a stochastic or random process, where the index set is not necessar-
ily a subset of the real line [5, page 7]. But there is a convention that an indexed
collection of random variables is called a random field when the index has two
or more dimensions [103, page 1][66, page 1][100, page 171]. If the specific defi-
nition of a stochastic process requires the index set to be a subset of the real line,
then the random field is considered as a generalization of stochastic process [7,
page 19].

5.9 Point processes
A point process is a collection of points randomly located on some mathemati-
cal space such as the real line, n-dimensional Euclidean space, or more abstract
spaces. There are different interpretations of a point process, such a random
counting measure or a random set [40, page 108][74, page 10]. Some authors
regard a point process and stochastic process as two different objects such that a
point process is a random object that arises from or is associated with a stochastic
process [47, page 194][44, page 3], though it has been remarked that the difference
between point processes and stochastic processes is not clear [44, page 3].

Other authors consider a point process as a stochastic process, where the pro-
cess is indexed by sets of the underlying space3 on which it is defined, such as the
real line or n-dimensional Euclidean space [89, page 31][58, page 232][134, page
99]. Other stochastic processes such renewal and counting processes are studied
in the theory of point processes [47][44]. Sometimes the term “point process” is
not preferred, as historically the word “process” denoted an evolution of some
system in time, so point process is also called a random point field [40, page 109].

3In the context of point processes, the term “state space” can mean the space on which the point
process is defined such as the real line[94, page 8][116, Preface], which corresponds to the index set in
stochastic process terminology.
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6 History

6.1 Early probability theory
Probability theory has its origins in games of chance, which have a long history,
with some games being played thousands of years ago [49], but very little analy-
sis on them was done in terms of probability [113, Page 1]. The year 1654 is often
considered the birth of probability theory when French mathematicians Pierre
Fermat and Blaise Pascal had a written correspondence on probability, motivated
by a gambling problem [137][153, Chapter 2][150, Pages 24 to 26]. But there was
earlier mathematical work done on the probability of gambling games such as
”Liber de Ludo Aleae” by Cardano, written in the 16 th century but posthu-
mously published later in 1663 [18].

Jakob Bernoulli 4 later wrote “Ars Conjectandi”, which is considered a signif-
icant event in the history of probability theory. Bernoulli’s book was published,
also posthumously, in 1713 and inspired many mathematicians to study prob-
ability [113, Page 56][150, Page 37]. But despite some renown mathematicians
contributing to probability theory, such as Pierre-Simon Laplace, Abraham de
Moivre, Carl Gauss, Siméon Poisson and Pafnuty Chebyshev [41, 25], most of
the mathematical community 5 did not consider probability theory to be part of
mathematics until the 20th century [19, 52, 46, 41].

6.2 Statistical mechanics
In the physical sciences, scientists developed in the 19th century the discipline
of statistical mechanics, where physical systems, such as containers filled with
gases, can be regarded or treated mathematically as collections of many moving
particles. Although there were attempts to incorporate randomness into statisti-
cal physics by some scientists, such as Rudolf Clausius, most of the work had lit-
tle or no randomness[155, pages 22 and 23][37, pages 150 and 151]. This changed
when in 1859 James Clerk Maxwell contributed significantly to the field, more
specifically, to the kinetic theory of gases, by presenting work where he assumed
the particles in a gas moved in random directions at a random velocities [155,
pages 30 and 31][36, page 243]. The kinetic theory of gases and statistical physics
continued to be developed in the second half of the 19th century, with work
done chiefly by Clausius, Ludwig Boltzmann and Josiah Gibbs, which would
later have an influence on Albert Einstein’s model for Brownian movement[38,
pages 15 and 16].

4Also known as James or Jacques Bernoulli [76, Page 221].
5It has been remarked that a notable exception was the St Petersburg School in Russia, where math-

ematicians led by Chebyshev studied probability theory [19].
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6.3 Measure theory and probability theory
In 1900 at the International Congress of Mathematicians in Paris David Hilbert
presented a list of mathematical problems, where he asked in his sixth problem
for mathematical a treatment of physics and probability involving axioms [25].
Around the start of the 20th century, mathematicians developed measure theory,
a branch of mathematics for studying integrals of mathematical functions, where
two of the founders were French mathematicians, Henri Lebesgue and Emile
Borel [52, 25]. Later in 1925 another French mathematician Paul Lévy published
the first probability book that used ideas from measure theory [25].

In 1920s significant and fundamental contributions to probability theory were
made in the Sovient Union by mathematicians such as Sergei Bernstein, Alexan-
der Khinchin 6, and Andrei Kolmogorov [46]. Kolmogorov published in 1929
his first attempt at presenting a mathematical foundation, based on measure the-
ory, for probability theory [91, page 33]. Two years later Khinchin gave the first
mathematical definition of a stochastic process [50].

6.4 Birth of modern probability theory
In 1933 Andrei Kolmogorov published in German his book on the foundations
of probability theory titled Grundbegriffe der Wahrscheinlichkeitsrechnung7, where
Kolmogorov used measure theory to develop an axiomatic framework for prob-
ability theory. The publication of this book is now widely considered to be the
birth of modern probability theory, when the theories of probability and stochas-
tic processes became parts of mathematics [25, 46].

After the publication of Kolmogorov’s book, further fundamental work on
probability theory and stochastic processes was done by Khinchin and Kolmogorov
as well as other mathematicians such as Joseph Doob, William Feller, Maurice
Fréchet, Paul Lévy, Wolfgang Doeblin, and Harald Cramér [25, 46]. Decades
later Cramér referred to the 1930s as the “heroic period of mathematical prob-
ability theory” [46]. But World War II greatly interrupted the development of
probability theory, causing, for example, the migration of Feller from Sweden to
the United States of America [46] and the death of Doeblin, considered now a
pioneer in stochastic processes [111].

6.5 Stochastic processes after World War II
After World War II the study of probability theory and stochastic processes gained
more attention from mathematicians, with signification contributions made in

6The name Khinchin is also written in (or transliterated into) English as Khintchine [50].
7Later translated into English and published in 1950 as Foundations of the Theory of Probabil-

ity [25]
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many areas of probability and mathematics as well as the creation of new ar-
eas [46, 114]. Starting in the 1940s, Kiyosi Itô published papers developing the
field of stochastic calculus, which involves stochastic integrals and stochastic dif-
ferential equations based on the Wiener or Brownian motion process [1]. Also
starting in the 1940s, connections were made between stochastic processes, par-
ticularly martingales, and the mathematical field of potential theory, with early
ideas by Shizuo Kakutani and then later work by Joseph Doob [114]. Further
work, considered pioneering, was done by Gilbert Hunt in the 1950s, connect-
ing Markov processes and potential theory, which had a significant effect on the
theory of Lévy processes and led to more interest in studying Markov processes
with methods developed by Itô [21, see Preface][139, page 176][84].

In 1953 Doob published his book “Stochastic processes”, which had a strong
influence on the theory of stochastic processes and stressed the importance of
measure theory in probability [27, 114]. Doob also chiefly developed the theory
of martingales, with later substantial contributions by Paul-André Meyer. Earlier
work had been carried out by Sergei Berstein, Paul Lévy and Jean Ville, the latter
adopting the term martingale for the stochastic process [77, page 1 and 2][56].
Methods from the theory of martingales became popular for solving various
probability problems. Techniques and theory were developed to study Markov
processes and then applied to martingales. Conversely, methods from the theory
of martingales were established to treat Markov processes [114].

Other fields of probability were developed and used to study stochastic pro-
cesses, with one main approach being the theory of large deviations [114]. The
theory has many applications in statistical physics, among other fields, and has
core ideas going back to at least the 1930s. Later in the 1960s and 1970s funda-
mental work was done by Alexander Wentzell in the Soviet Union and Monroe
D. Donsker and Srinivasa Varadhan in the United States of America [57], which
would later result in Varadhan winning the 2007 Abel Prize [123].

The theory of stochastic processes still continues to be a focus of research,
with yearly international conferences on the topic of stochastic processes [8, page
1336][54, see Preface][28][151, see Preface][34, see Preface].

6.6 Discoveries of specific stochastic processes
Although Khintchine gave early mathematical definitions of stochastic processes
in the 1930s [50, 157], specific stochastic processes had already been discovered
in different settings, such as the Brownian motion process and the Poisson point
process [84, 73]. Some families of stochastic processes such as point processes or
renewal processes have long and complex histories, stretching back centuries [47,
chapter 1].
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6.6.1 Bernoulli process

The Bernoulli process, which can serve as a mathematical model for flipping
a biased coin, is possibly the first stochastic process to have been studied [60,
page 301]. The process is a sequence of independent Bernoulli trials [138, page
3], which are named after Jakob Bernoulli who used them to study games of
chance, including probability problems proposed and studied earlier by Christi-
aan Hugens [76]. Bernoulli’s work, including the study of Bernoulli trials, was
published in Ars Conjectandi in 1713 [76, pages 223 and 226][108, pages 8 to 10].

6.6.2 Random walks

In 1905, Karl Pearson coined the term ”random walk” while posing a problem
describing a random walk on the plane, which was motivated by an application
in biology, but such problems involving random walks had already been studied
in other fields. Certain gambling problems that were studied centuries earlier
can be considered as problems involving random walks [158][108, pages 8 to 10].
For example, the problem known as the ”Gambler’s ruin” is based on a simple
random walk [89, page 49][60, page 374], and is an example of a random walk
with absorbing barriers [82, page 5][135]. Pascal, Fermat and Huyens all gave
numerical solutions to this problem without detailing their methods [76, page
63], and then more detailed solutions were presented by Jakob Bernoulli and
Abraham de Moivre [76, page 202].

For random walks in n-dimensional integer lattices, George Plya published
in 1919 and 1921 work, where he studied the probability of a symmetric random
walk returning to a previous position in the lattice. Plya showed that a symmetric
random walk, which has an equal probability to advance in any direction in the
lattice, will return to a previous position in the lattice an infinite number of times
with probability one in one and two dimensions, but with probability zero in
three or higher dimensions [60, page 385][81, page 111].

6.6.3 Wiener process

The Wiener process or Brownian motion process has its origins in three separate
fields: statistics, finance and physics [84]. In 1880, Thorvald Thiele wrote a paper
on the method of least squares, where he uses the process to study the errors
of a model in time-series analysis [75, 106]. The work is now considered as an
early discovery of the statistical method known as Kalman filtering, but the work
was largely overlooked. It is thought that the ideas in Thiele’s paper were too
advanced to have been understood by the broader mathematical and statistical
community at the time [106].

The French mathematician Louis Bachelier used a Wiener process in his 1900
thesis in order to model price movements on the Paris Bourse, a stock exchange [42],
without knowing the work of Thiele [84]. It has been speculated that Bachelier
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drew ideas from the random walk model of Jules Regnault, but Bachelier did not
cite him [86], and Bachelier’s thesis is now considered pioneering in the field of
financial mathematics [86, 42].

It is commonly thought that Bachelier’s work gained little attention and was
forgotten for decades until it was rediscovered in the 1950s by the Leonard Sav-
age, and then become more popular after Bachelier’s thesis was translated into
English in 1964. But the work was never forgotten in the mathematical commu-
nity, as Bachelier published a book in 1912 detailing his ideas [86], which was
cited by mathematicians including Doob, Feller [86] and Kolomogorov [84]. The
book continued to be cited, but then starting in 1960s the original thesis by Bache-
lier began to be cited more than his book when economists started citing Bache-
lier’s work [86].

In 1905 Albert Einstein published a paper where he studied the problem of
Brownian motion or movement to explain the seemingly random movements
of particles in liquids by using ideas from the kinetic theory of gases. Einstein
derived a differential equation, known as a diffusion equation, for describing
the probability of finding a particle in a certain region of space. Shortly after
Einstein’s first paper on Brownian movement, Marian Smoluchowski published
work where he cited Einstein, but wrote that he had independently derived the
equivalent results by using a different method [38].

Einstein’s work later inspired Norbert Wiener in the 1920s [38] to use a type
of measure theory, developed by Percy Daniell, and Fourier analysis to prove the
existence of the Wiener process as a mathematical object [84].

6.6.4 Poisson process

The Poisson process is named after Siméon Poisson, due to its definition involv-
ing the Poisson distribution, but Poisson never studied the process [47, pages 8
and 9][147]. There are a number of claims for early uses or discoveries of the
Poisson point process [147][73]. At the beginning of the 20th century the Poisson
process would arise independently in different situations [147][73]. In Sweden
1903, in Filip Lundberg published a thesis containing work, now considered fun-
damental and pioneering, where he proposed to model insurance claims with a
homogeneous Poisson process [59][45].

Another discovery occurred in Denmark in 1909 when Agner Krarup Erlang
derived the Poisson distribution when developing a mathematical model for the
number of incoming phone calls in a finite time interval. Erlang was not at the
time aware of Poisson’s earlier work and assumed that the number phone calls
arriving in each interval of time were independent to each other. He then found
the limiting case, which is effectively recasting the Poisson distribution as a limit
of the binomial distribution [147].

In 1910 Ernest Rutherford and Hans Geiger published experimental results
on counting alpha particles. Their experimental work had mathematical contri-
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butions from Harry Bateman, who derived Poisson probabilities as a solution to
a family of differential equations, resulting in the independent discovery of the
Poisson point process [147].

In general, there were many studies and applications of the Poisson point
process, but its early history is complicated, which has been explained by the
various applications of the process in numerous fields by biologists, ecologists,
engineers and various physical scientists [147].

6.6.5 Markov processes

Markov processes and Markov chains are named after Andrei Markov who stud-
ied Markov chains in the early 20 th century. Markov was interested in studying
an extension of independent random sequences. In his first paper on Markov
chains, published in 1906, Markov showed that under certain conditions the av-
erage outcomes of the Markov chain would converge to a fixed vector of val-
ues, so proving a weak law of large numbers without the independence assump-
tion [69, pages 464 to 466][32, Preface][79], which had been commonly regarded
as a requirement for such mathematical laws to hold [79]. Markov later used
Markov chains to study the distribution of vowels in ”Eugene Onegin”, written
by Alexander Pushkin, and proved a central limit theorem for such chains [69,
pages 464 to 466].

In 1912 Poincaré studied Markov chains on finite groups with an aim to study
card shuffling. Other early uses of Markov chains include a diffusion model, in-
troduced by Paul and Tatyana Ehrenfest in 1907, and a branching process, in-
troduced by Francis Galton and Henry William Watson in 1873, preceding the
work of Markov [69, pages 464 to 466][32, page ix]. After the work of Gal-
ton and Watson, it was later revealed that their branching process had been
independently discovered and studied around three decades earlier by Irénée-
Jules Bienaymé [136]. Starting in 1928, Maurice Fréchet became interested in
Markov chains, eventually resulting in him publishing in 1938 a detailed study
on Markov chains [69, pages 464 to 466][35].

Andrei Kolmogorov developed in a 1931 paper a large part of the early the-
ory of continuous-time Markov processes [91, page 33] [46]. Kolmogorov was
partly inspired by Louis Bachelier’s 1900 work on fluctuations in the stock mar-
ket as well as Norbert Wiener’s work on Einstein’s model of Brownian move-
ment [14, page 5][91, page 33]. He introduced and studied a particular set of
Markov processes known as diffusion processes, where he derived a set of differ-
ential equations describing the processes [91, page 33][143, page 146]. Indepen-
dent of Kolmgorov’s work, Sydney Chapman derived in a 1928 paper an equa-
tion, now called the Chapman-Kolmogorov equation, in a less mathematically
rigorous way than Kolmogorov, while studying Brownian movement [20]. The
differential equations are now called the Kolmogorov equations [6, Preface] or
the Kolmogorov-Chapman equations [91, 57]. Other mathematicians who con-
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tributed significantly to the foundations of Markov processes include William
Feller, starting in 1930s, and then later Eugene Dynkin, starting in the 1950s [46].

6.6.6 Lévy processes

Lévy processes such as the Wiener process and the Poisson process (on the real
line) are named after Paul Lévy who started studying them in the 1930s [8],
but they have connections to infinitely divisible distributions going back to the
1920s[21, see Preface]. In a 1932 paper Kolmogorov derived a characteristic func-
tion for random variables associated with Lévy processes. This result was later
derived under more general conditions by Lévy in 1934, and then Khinchin inde-
pendently gave an alternative form for this characteristic function in 1937 [46][7,
page 67]. In addition to Lévy, Khinchin and Kolomogrov, early fundamental con-
tributions to the theory of Lévy processes were made by Bruno de Finetti and
Kiyosi Itô [21, see Preface].

7 Etymology
The word “stochastic” in English was originally used as an adjective with the
definition “pertaining to conjecturing”, and stemming from a Greek word mean-
ing “to aim at a mark, guess”, and the Oxford English Dictionary gives the year
1662 as its earliest occurrence [3]. In his work on probability “Ars Conjectandi”,
originally published in Latin in 1713, Jakob Bernoulli used the phrase “Ars Con-
jectandi sive Stochastice”, which has been translated to “the art of conjecturing
or stochastics” [140, page 5]. This phrase was used, with reference to Bernoulli,
by economist and statistician Ladislaus Bortkiewicz [141, page 136] who in 1917
wrote in German the word “stochastik” with a sense meaning random. The term
“stochastic process” first appeared in English in a 1934 paper by Joseph Doob [3].
For the term and a specific mathematical definition, Doob cited another 1934 pa-
per, where the term “stochastischer Prozeß”’ is used in German by Alexander
Khinchin [50][92].

Early occurrences of the word “random” in English with its current meaning,
relating to chance or luck, date back to the 16th century, while earlier recorded
usages started in the 14 th century as a noun meaning “impetuosity, great speed,
force, or violence (in riding, running, striking, etc.)”. The word itself comes from
a Middle French word meaning “speed, haste”, and it is probably derived from
a French verb meaning to “to run” or “to gallop”. The first written appearance
of the term “random process” pre-dates “stochastic process”, which the Oxford
English Dictionary also gives as a synonym, and was used in an article by Francis
Edgeworth published in 1888 [2].
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8 Terminology
The definition of a stochastic process varies [61, page 580], but a stochastic pro-
cess is traditionally defined as a collection of random variables indexed by some
set [126, page 121 and 122][9, page 408] . The terms “random process” and
“stochastic process” are considered synonyms and are used interchangeably, with-
out the index set being precisely specified [5, page 7][148, page 45][39, page
175][128, page 91][87, page 24][70, page 383]. Both “collection” [103, page 1][148,
page 45] or “family” are used [120, page 7][83, page 13], while instead of “index
set”, sometimes the terms “parameter set” [103, page 1] or “parameter space” [5,
page 7][119] are used.

The term “random function” is also used to refer to a stochastic or random
process [112, 163][66, page 1][33, page 133], though sometimes it is only used
when the stochastic process takes real values [83, page 13][103, page 2]. This
term is also used when the index sets are mathematical spaces other than the real
line [66, page 1][71, page 1], while the terms “stochastic process “ and “random
process” are usually used when the index set interpreted as time [17, page 1][66,
page 1][page 1][71], and other terms are used such as “random field” when the
index set is n-dimensional Euclidean spaceRn or a manifold[103, page 1][5, page
7][66, page 1].

9 Further definitions

9.1 Law
For a stochastic process X defined on the probability space (P,F ,Ω), the law of
X is defined as the image measure:

µ = P ◦X−1,

where is P a probability measure, the symbol ◦ denotes function composition
and X−1 is the pre-imagine of the measurable function or, equivalently, the ST -
valued random variable X , where ST is the space of all the possible S-valued
functions of t ∈ T , so the law of a stochastic process is a probability measure [126,
pages 122][87, page 24 and 25][62, page 571][124, pages 40 and 41].

For a measurable subset B of ST , the pre-image of X gives

X−1(B) = {ω ∈ Ω : X(ω) ∈ B},

so the law of a X can be written as [103, page 2]:

µ(B) = P ({ω ∈ Ω : X(ω) ∈ B}).

The law of a stochastic process or a random variable is also called the prob-
ability law, probability distribution, or the distribution [159, page 23][7, page
4][125, page 10][62, page 571][31, page 528].
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9.2 Finite-dimensional probability distributions
For a stochastic process X with law µ, its finite-dimensional distributions are
defined as:

µt1,...,tn = P ◦ (X(t1), . . . , X(tn))−1,

where n ≥ 1 is a counting number and each set ti is a non-empty finite subset of
the index set T , so each ti ⊂ T , which means that t1, . . . , tn is any finite collection
of subsets of the index set T [87, page 25][126, page 123].

For any measurable subset C of the Cartesian power Sn = S1 × · · · × Sn, the
finite-dimensional distributions of a stochastic process X can be written as[103,
page 2]:

µt1,...,tn(C) = P ({ω ∈ Ω : Xt1(ω), . . . , Xtn(ω) ∈ C}.

The finite-dimensional distributions of a stochastic process satisfy two math-
ematical conditions known as consistency conditions [129, pages 177 and 178].

9.3 Stationarity
A stochastic process is said to have the property of stationarity when all the
random variables of the stochastic process are identically distributed. In other
words, if X is a stationary stochastic process, then for any t ∈ T the random
variable Xt has the same distribution, which means that for any set of n index set
values t1, . . . , tn, the corresponding n random variables

Xt1 , . . . Xtn ,

all have the same probability distribution. The index set of a stationary stochastic
process is usually interpreted as time, so it can be the integers or the real line [103,
page 6 and 7][66, page 4]. But the concept of stationarity also exists for point
processes and random fields, where the index set is not interpreted as time[4,
page 15][40, page 112] [103, pages 6 and 7].

When the index set T can be interpreted as time, a stochastic process is said
to be stationary if its finite-dimensional distributions are invariant under trans-
lations of time. This type of stochastic process can be used to describe a physi-
cal system that is in steady state, but still experiences random fluctuations [103,
pages 6 and 7]. The intuition behind such stationarity is that as time passes the
distribution of the stationary stochastic process remains the same [51, pages 94 to
96]. A sequence of random variables forms a stationary process if and only if the
random variables are identically distributed [103, pages 6 and 7].

A stochastic process with above definition of stationarity is sometimes said
to be strictly stationary, but there are other forms of stationarity. One example
is when a discrete-time or continuous-time stochastic process X is said to be sta-
tionary in the wide sense, then the process X has a finite second moment for
all t ∈ T and the covariance of the two random variables Xt and Xt+h depends
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only on the number h for all t ∈ T [51, pages 94 to 96][60, pages 298 and 299].
The concept of stationarity in the wide sense was introduced by Khinchin and
has other names including covariance stationarity or stationarity in the broad
sense[66, page 8][60, pages 298 and 299].

9.4 Increment
For a discrete-time or continuous-time stochastic process, an increment is how
much a stochastic process changes over a certain time period, so it is a random
quantity formed by the difference of two random variables of the same stochas-
tic process at two points in time. For example, if X is a continuous-stochastic
process with state space S, then for any two non-negative numbers t1 ∈ [0,∞)
and t2 ∈ [0,∞) such that t1 ≤ t2, the difference Xt2 −Xt1 is a S-valued random
variable known as an increment [89, page 27] [8]. Often the state space S is the
real line or the natural numbers, but it can be n-dimensional Euclidean space or
more abstract spaces such as Banach spaces, where the concept of the difference
between to points of the space can be defined [8].

9.5 Filtration
When the index set T has some total order relation, such in case of the index set
being some subset of the real numbers, then it is possible to study the amount
of information contained in a stochastic process Xt at t ∈ T , which can be inter-
preted as the moment or time t, by using the concept of a filtration [60, page 294
and 295][161, page 93]. A filtration, denoted here by {Ft}t∈T , on a probability
space (Ω,F , P ) is a family of sigma-algebras such that Fs ⊆ Ft ⊆ F for all s ≤ t,
where t, s ∈ T , so a filtration is an increasing sequence of sigma-algebras [60,
page 294 and 295]. The intuition behind a filtration Ft is that as time t passes,
more and more information onXt is known or available, which is captured in Ft,
resulting in finer and finer partitions of Ω [95, page 23][117, page 37].

9.6 Modifications
A stochastic processX that has the same index set T , set space S, and probability
space (Ω,F , P ) as another stochastic process Y is said to be a modification of Y
if for all t ∈ T the following

P (Xt = Yt) = 1,

holds. Two stochastic processes that are modifications of each other are said to
be stochastically equivalent or equivalent [31, page 530].

Instead of modification, the term version is also used [95, page 48] [119, page
14][60, page 472][4, page 14], however some authors use the term version when
two stochastic processes have the same finite-dimensional distributions, but they
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may be defined on different probability spaces, so two stochastic processes that
are versions of each other are also modifications of each other, in the latter sense,
but not the converse [125, pages 18 and 19].

If a continuous-time real-valued stochastic process meets certain moment con-
ditions on its increments, then the Kolomogorov continuity theorem says that
there exists a modification of this process that has continuous sample paths with
probability one, so the stochastic process has a continuous modification or ver-
sion [119, page 14][60, page 472][7, page 20]. The theorem can also be derived for
random fields so the index set is n-dimensional Euclidean space [101, page 31] as
well as to stochastic processes with metric spaces as their state spaces [87, page
35].

9.7 Indistinguishable
Two stochastic processesX and Y defined on the same probability space (Ω,F , P )
with the same index set T and set space S are said be indistinguishable if the fol-
lowing

P (Xt = Yt for all t ∈ T ) = 1,

holds [126, page 130][62, page 571]. If two X and Y are modifications of each
other and are almost surely continuous, then X and Y are indistinguishable [85,
page 11].

9.8 Separability
Separability is a property of a stochastic process based on its index set in re-
lation to the probability measure. The property is assumed so that functionals
of stochastic processes or random fields with uncountable index sets can form
random variables. For a stochastic process to be separable, in addition to other
conditions, its index set must be a separable space 8, which means that the index
set has a dense countable subset [83, page 32][4, pages 14 and 15].

More precisely, a real-valued continuous-time stochastic process X with a
probability space (Ω,F , P ) is separable if its index set T has a dense countable
subset U ⊂ T and there is a set Ω0 ⊂ Ω of probability zero, so P (Ω0) = 0, such
that for every open set G ⊂ T and every closed set F ⊂ R = (−∞,∞), the two
events {Xt ∈ F for all t ∈ G ∩ T} and {Xt ∈ F for all t ∈ G} differ at most from
each other on a subset of Ω0 [66, page 150][154, page 19][115, page 340].

The definition of separability 9 can also be stated for other index sets and state

8The term “separable” appears twice here with two different meanings, where the first meaning is
from probability and the second from topology and analysis. For a stochastic process to be separable
(in a probabilistic sense), its index set must be a separable space (in a topological or analytic sense), in
addition to other conditions [143, page 94].

9The definition of separability for a continuous-time real-valued stochastic process can be stated in
other ways [23, pages 526 and 527][31, page 535].
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spaces [71, page 22], such as in the case of random fields, where the index set as
well as the state space can be n-dimensional Euclidean space [4, pages 14 and
15][5, page 8].

The concept of separability of a stochastic process was introduced by Joseph
Doob [83], where the underlying idea is to make a countable set of points of
the index set determine the properties of the stochastic process [23, page 526].
Any stochastic process with a countable index set already meets the separability
conditions, so discrete-time stochastic processes are separable [51, page 56].

A theorem by Doob, sometimes known as Doob’s separability theorem, says
that any real-valued continuous-time stochastic process has a separable modifi-
cation [83, page 33][154, page 20][93]. Versions of this theorem also exist for more
general stochastic processes with index sets and state spaces other than the real
line [143, page 93].

9.9 Skorokhod space
A Skorokhod or Skorohod space is a mathematical space of all the functions that
are right-continuous with left limits, defined on some interval of the real line such
as [0, 1]] or [0,∞), and take values on the real line or on some metric space [159,
pages 78 and 79] [71, page 24][30, page 53]. Such functions are known as cdlg
or cadlag functions, based on the French acronym continue droite, limite gauche,
due to the functions being right-continuous with left limits [159, pages 78 and
79][95, page 4], so they are also occasionally called corol functions (continuous
on the right with left limits on the left) [13, page 29]. A Skorokhod function
space is often denoted with the letter D [159, pages 78 and 79] [71, page 24][30,
page 53][95, page 4], so the function space is also referred to as space D[9, page
420][22, page 121][159, 78]. The notation of the space can also include the interval
on which all the cdlg functions are defined, so, for example, D[0, 1] denotes the
space of cdlg functions defined on [0, 1] [22, page 121][95, page 4].

Skorokhod function spaces are frequently used in the theory of stochastic pro-
cesses because it often assumed that the sample functions of continuous-time
stochastic processes belong to a Skorokhod space [9, page 420][30, page 53]. Such
spaces contain continuous functions, which correspond to sample functions of
the Wiener process. But the space also has functions with discontinuities, which
means that the sample functions of stochastic processes with jumps, such as the
Poisson process (on the real line), are also members of this space [22, page 121][26,
page 154].

10 Mathematical construction
In mathematics, constructions of mathematical objects are needed, which is also
the case for stochastic processes, to prove that they exist mathematically [129,
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page 177]. There are two main approaches for constructing a stochastic process.
One approach involves considering a measurable space of functions, defining a
suitable measurable mapping from a probability space to this measurable space
of functions, and then deriving the corresponding finite-dimensional distribu-
tions [4, page 13].

Another approach involves defining a collection of random variables to have
specific finite-dimensional distributions, and then using Kolmogorov’s existence
theorem 10 to prove a corresponding stochastic process exists [4, page 13][129,
page 177]. The theorem, which is an existence theorem for measures on infi-
nite product spaces [55, page 410], says that if any finite-dimensional distribu-
tions satisfy two conditions, known as consistency conditions, then there exists
a stochastic process with those finite-dimensional distributions [129, pages 177
and 178].

10.1 Construction difficulties
When constructing continuous-time stochastic processes certain mathenatical dif-
ficulties arise, due to the uncountable index sets, which do not occur with discrete-
time processes [99, page 63][93, page 153]. One problem is that is it possible to
have more than one stochastic process with the same finite-dimensional distri-
butions. This means that the distribution of the stochastic process does not, nec-
essarily, specify uniquely the properties of the sample functions of the stochastic
process [4, page 14][31, pages 529 and 530].

Another problem is that functionals of continuous-time process that rely upon
an uncountable number of points of the index set may not be measurable, so the
probabilities of certain events may not be consistent [83, page 32]. For exam-
ple, the supremum of a stochastic process or random field is not necessarily a
well-defined random variable [5, page 8][93, page 154]. For a continuous-time
stochastic process X , other characteristics that depend on an uncountable num-
ber of points of the index set T include [83, page 32]:
– a sample function of a stochastic process X is a continuous function of t ∈ T ;
– a sample function of a stochastic process X is a bounded function of t ∈ T ; and
– a sample function of a stochastic processXis an increasing function of t ∈ T . To
overcome these two difficulties, various assumptions and approaches are possi-
ble [9, page 408].

10.2 Resolving construction difficulties
One approach, pioneered by Doob, for avoiding construction difficulties is to as-
sume that the stochastic process is separable [10, page 211]. Separability ensures

10The theorem has other names including Kolmogorov’s consistency theorem [10], Kolmogorov’s
extension theorem [119, page 11] or the Daniell-Kolmogorov theorem [161, page 124].
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that infinite-dimensional distributions determine the properties of sample func-
tions by requiring that sample functions are essentially determined by their val-
ues on a dense countable set of points in the index set [5, page 14]. Furthermore,
if a stochastic process is separable, then functionals of an uncountable number of
points of the index set are measurable and their probabilities can be studied [5,
page 14][83, page 32].

Another approach is possible, originally developed by Skorokhod and Kol-
mogorov [10, page 211], for a continuous-time stochastic process with any met-
ric space as its state space. For the construction of such a stochastic process, it
is assumed that the sample functions of the stochastic process belong to some
suitable function space, which is usually the Skorokhod space consisting of all
right-continuous functions with left limits. This approach is now more used than
the separability assumption [9, page 408][65], but such a stochastic process based
on this approach will be automatically separable [31, page 536].

Although less used, the separability assumption is considered more general
because every stochastic process has a separable version [65]. It is also used when
it is not possible to construct a stochastic process in a Skorokhod space [31, page
535]. For example, separability is assumed when constructing and studying ran-
dom fields, where the collection of random variables is now indexed by sets other
than the real line such as n-dimensional Euclidean space [5, page 8][163, page 5].

The term regularity is used when discussing and assuming such conditions
for a stochastic process to resolve issues [31, pages 532 to 537][93, pages 148 to
165]. In other words, to study stochastic processes with uncountable index sets,
it is assumed that the stochastic process adheres to some type of regularity con-
dition such as the sample functions being continuous [154, page 22][159, page
79].

11 Further reading
There are many, many books that cover the very broad topic of stochastic pro-
cesses. The original book, now considered a classic, was by Doob[51]. There are
others with similar names such those by Parzen[120], Rosenblatt[128] and Lam-
perti [103]. Books with more focus on applications include the two volumes by
Karlin and Taylor [89, 90] and the less mathematical introduction by Ross [130]

On more specific topics, the two-volume set by Rogers and Williams[126, 127]
covers much information on martingales and Markov processes. Mörters and
Peres[117] treat the Brownian motion process, while this process with stochastic
calculus are covered in many works including those by Klebaner [95], Steele [146],
Øksendal [119], Shreve[142], and Karatzas and Shreve [88]. Applebaum [8] intro-
duces Levy processes in an article for general mathematicians, but he also covers
them in deep detail in his book [7]. Levy processes are also the topics of the books
by Bertoin [21] and Sato [133].
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Random fields (and their relationship to geometry) are covered by Adler [4]
and the sequel by Adler and Taylor [5]. Point processes and their relations to
stochastic processes are covered in the two-volume reference by Daley and Vere-
Jones [47, 48].

The respective articles by Cramér [46] and Meyer [114] are good pieces for
the history of probability theory and stochastic processes. The article by Jarrow
and Protter [84] covers the history of stochastic differential equations. Bingham
has penned a series of interesting papers [24, 25, 27] on the history of probability
and stochastic processes.
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[32] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues.
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[35] B. Bru and S. Hertz. Maurice Fréchet. In Statisticians of the Centuries, pages
331–334. Springer, 2001.

[36] S. G. Brush. The development of the kinetic theory of gases iv. maxwell.
Annals of Science, 14(4):243–255, 1958.

[37] S. G. Brush. Foundations of statistical mechanics 1845–1915. Archive for
History of Exact Sciences, 4(3):145–183, 1967.

[38] S. G. Brush. A history of random processes. Archive for History of Exact
Sciences, 5(1):1–36, 1968. ISSN 1432-0657. doi: 10.1007/BF00328110.

[39] L. Chaumont and M. Yor. Exercises in Probability: a guided tour from measure
theory to random processes, via conditioning. Cambridge University Press,
2012.

[40] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and
its applications. John Wiley & Sons, 2013.

[41] K. L. Chung. Probability and Doob. The American mathematical monthly, 105
(1):28–35, 1998.

[42] J.-M. Courtault, Y. Kabanov, B. Bru, P. Crépel, I. Lebon, and A. Le Marc-
hand. Louis Bachelier on the centenary of théorie de la spéculation. Math-
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