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Behaviour of signal strengths

A user receives signals from many transmitters. The signals are distorted by
physical fading effects which are often modelled as random.

Objective: Describe the distribution of the point process of signal strengths
experienced by a typical user.

Implications for wireless network design eg the positioning of transmitters.

Figure : Lifted from http://www.visiognomy.com/diagrams/archives/2005/
02/16/cell-phone-towers/

http://www.visiognomy.com/diagrams/archives/2005/02/16/cell-phone-towers/
http://www.visiognomy.com/diagrams/archives/2005/02/16/cell-phone-towers/


Mathematical model of signals

With a “typical user” located at the origin, the
model has three components:

1. Transmitter positions :
{xi}i∈N ⊆ R2/{0} .

2. A path-loss or attenuation function:
` : R2/{0} → (0,∞) .

3. Sequence of i.i.d. random variables
representing fading effects (eg signals
colliding with obstacles like buildings).

0 < S1,S2, . . .

Signal propagation model:

Pi = Si`(xi ) =
Si

g(xi )

where g(xi ) := 1/`(xi ) is the path-gain
function .

Figure : Sketch by N. Ross

What is the random behaviour of power strengths {P1,P2, . . . } or the
propagation process {1/P1, 1/P2, . . . }?



Common assumptions

Simple power-law: g(x) = |x |β for constant β > 2,
In dense urban areas, Si are often log-normally distributed, but can be
exponentially or gamma distributed.
Assume positions are random Φ = {Xi}, usually a homogeneous
Poisson process
Often need Palm distribution and Laplace functional of the point process
Recent work involves determinantal point processes to capture
“repulsion” between transmitters

Figure : Lifted from a talk by Harpreet S. Dhillon – for more pictures see ‘Modeling and Analysis of K-Tier Downlink Heterogeneous
Cellular Networks’ by Dhillon et al., 2012.



Poisson transmitters implies Poisson signals

Transmitters form a Poisson process Φ = {Xi} on R2 with density λ

Define propagation process (inverse of power values Pi ):

Z := {Yi} ≡
{

g(Xi )

Si
: Xi ∈ Φ

}
. (1)

Definition based on convention ie the strongest signals are near zero

Captures how the network “appear” to a user or observer.

Lemma (Just the mapping theorem)

Under the Poisson model with function g(x) = |x |β and random S such that
E[S

2
β ] <∞. Then the propagation process Z = {Yi} is an inhomogeneous

Poisson point process on R+ with intensity measure

ΛZ ([0, t)) = at
2
β

where a := λπE(S
2
β ) .



Deterministic positioning of transmitters

For 0 < λ <∞ , assume a deterministic point pattern
φ = {xi}i ⊆ R2/{0} of transmitters such that

φ(r)

πr 2 → λ, as r →∞.

where φ(r) denotes the number of points of φ within distance r of the
origin ie number of points of φ in B0(r).

Assume (rescaled) log-normal fading variables:

S(σ)
i = eσNi−σ2/β ,

where Ni are i.i.d. standard normal variables.

Assume g(x) = |x |β .

Propagation process:

W (σ) :=

{
g(xi )

S(σ)
i

: xi ∈ φ

}
=

{
|xi |βi

S(σ)
i

: xi ∈ φ

}
.



Signals can “appear” Poisson under strong fading

Theorem (Blaszczyszyn, Karray, Keeler 2013, 2014)

Provided g(x) = |x |β and log-normal S(σ)
i , then as σ →∞ (implying

S(σ)
i → 0 in distribution), the point process W (σ) = {Y (σ)

i } converges weakly
to an inhomogeneous Poisson point process on R+ with intensity measure

ΛW ([0, t)) = at
2
β

where a := λπE([S(σ)
i ]

2
β ).

Observed a couple of times via simulation in engineering literature.

Proof uses classic translation convergence results eg Chapter 11 in
Daley and Vere-Jones (2008).

Relies heavily upon properties of g(x) = |x |β and log-normal Si eg
normal distribution is divisible and symmetric, g−1(Si ) is also log-normal.

Can this convergence result be extended to more general g(x) and Si?

Can bound be derived between W (σ) and a Poisson process with the
same intensity measure?



Assumptions and notation for generalization

Transmitter positioning:
Let φ = {xi}i ⊆ Rd/{0} be a locally finite collection of points in Rd such that

φ(r)

πr 2 → λ, as r →∞. (2)

Define I as a finite or countable index set such that φ = {xi : i ∈ I} .
Path-gain function:
Let g : Rd → R+ be a positive Borel measurable mapping.
Fading variables:
Let {Si : i ∈ I} be a sequence of i.d.d. positive random variables.
Propagation process:
Let Yi = g(xi )/Si and define the corresponding propagation point process

W := {Yi}i∈I

Let pi (t) := P(0 <Yi ≤ t) and M(t) :=
∑

i∈I pi (t) be the mean measure of W
Let Z be a Poisson process on R+ having a mean measure M(t).



Approximation theorem: Bounds on total variation

Recall the total variation distance between two probability measures
ν1, ν2 on the same measurable space (D,F(D)) is defined as

dTV(ν1, ν2) = sup
A∈B(D)

|ν1(A)− ν2(A)|.

Consider propagation point process W and Z restricted to compact
domain [0, t ] , denoted by W |t and Z |t
Denote the laws of W |t and Z |t by L(W |t ) and L(W |t ) .

Theorem (Keeler, Ross, and Xia 2014)

Provided the previous conditions, then the following bounds hold

1 ∧M(t)−1

32

∑
i∈I

pi (t)2 ≤ dTV(L(Z |t ),L(W |t )) ≤
∑
i∈I

pi (t)2 ≤ M(t) sup
i∈I

pi (t).

Proof of the term
∑

i pi (t)2 is due to a coupling argument (cf Le Cam’s
theorem).
Far right-hand side stems from the definition of the mean measure
M(t) =

∑
i pi (t) ; far left-hand side is due to Barbour and Hall (1984).



Convergence theorem

Theorem (Keeler, Ross, and Xia 2014)

g : Rd → R+ such that g(x) = h(|x |) for a continuous and nondecreasing h .
(S(σ))σ≥0 is a family of positive random variables indexed by some
non-negative parameter σ.
W (σ) is the process generated by S(σ), g and φ .
If

(i) S(σ)
P−→ 0 and (ii) E[W (σ)(t)]→ L(t),

as σ →∞ , then W (σ) converges weakly to a Poisson process on R+ with
mean measure L.

Intuitively, most points of φ are being sent out to infinity in W (σ) because
S(σ) tends to zero, .

Poisson limit is due to the thinning of the points in φ, but the retained
points are redistributed

Thinning scheme is different from the classical thinning schemes in the
literature eg Kallenberg (1975), Brown (1979), Schuhmacher (2005,
2009).



A simple example with Bernoulli fading variables (by N. Ross)

Consider a point pattern φ such that the mapped points {g(xi )}i are the
positive integers {1, 2, ...} .
Divide each point i by a random variable Si (σ) , hence the point process

1/S1(σ), 2/S2(σ), ...,

where the Si (σ) are i.i.d. taking only two possible values:

P(S(σ) = 1/σ) = 1− P(S(σ) = σ) = 1− 1/σ.

S(σ) tends to zero in probability as σ goes to infinity and by computing
directly P(i/Si (σ) ≤ t) , we can see that the number of points in the interval
(0, t ] converges to a Poisson variable, since

E[# of points ≤ t ] =
∑

i

P(i/Si (σ) ≤ t)→ t as n→∞,

and ∑
i

P(i/Si (n) ≤ t)2 → 0 as n→∞.

The previous theorem implies that the point process {1/S1(σ), 2/S2(σ), ...}
converges to a (homogeneous) Poisson process as σ goes to infinity.



Random positioning of transmitters

Replace φ with a locally finite point process Φ independent of {Si}i∈N.

Define
MΦ(t) =

∫
Rd

p(x)(t)Φ(dx),

where p(x)(t) = P(0 < g(x)/S ≤ t).

Conditional on Φ, let Z be the Cox process directed by the measure MΦ.

Theorem (Keeler, Ross, and Xia 2014)

For Φ, the following bounds hold

dTV(L(Z |t ),L(W |t )) ≤ E
∫
Rd

p(x)(t)
2Φ(dx)

For random Φ, an analogue of the previous convergence result is
possible.

Process may converge to a Cox process if the limit of its mean measure
is random.

When will it converge to a Poisson or Cox process?



Cox or Poisson?

Theorem (Keeler, Ross, and Xia 2014)

Assume that Φ is a process on Rd with a locally finite mean measure
Λ(r) := E[Φ(r)] such that limr↓0 Λ(r) = 0 and as r →∞,

Λ(r)→∞, Var(Φ(r))

Λ(r)2 → 0. (3)

Assume g(x) = h(|x |), where h is continuous, nondecreasing and positive
on R+. If

(i)S(σ)
P−→ 0 and (ii)

∫
Rd

P
(

0 <
g(x)

S(σ)
≤ t
)

Λ(dx)→ L(t), (4)

as σ →∞ , then W (σ) converges weakly to a Poisson process Z L with mean
measure L.



Interesting questions

For a given transmitter configuration, do some fading models induce a
propagation point process significantly closer to Poisson than others?

How do the results translate to functions of the point process?

What statistical parameter estimation methods can be developed?

Can the results be extended to models with short range (spatial)
dependence between the fading variables?

How can the results be generalized?

Thank you.
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