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Historical overview: stochastic models of wireless networks

Communication networks have long inspired stochastic models
1909: Erlang discovered the Poisson process in a teletraffic context
1961: Gilbert proposed a stochastic and purely geometric model for
wireless networks, considered birth of continuum percolation
1980s: Engineers developed mostly geometric models based on
Poisson process for certain wireless networks.
1990s: Zozi and Pupolin did some pioneering (but often forgotten or
overlooked) work on a signal-to-interference ratio (SIR) model.
2000s: Engineers returned to developing geometric models for ad hoc
networks such as sensor networks and mobile ad hoc networks
2001: Baccelli and Błaszczyszyn, motivated by information theory,
introduced a SIR coverage model based on stochastic geometry
2005/6: Dousse and friends introduced and studied SIR percolation,
extending the original model of Gilbert.
2010: Andrews Baccelli, and Ganti adapted the SIR model for mobile or
cellular phone networks.
Research field explodes: more and more engineering papers using
stochastic geometry, motivated by denser phone networks and new
technologies being deployed to handle YouTube etc traffic



Coverage models

Classic models of wireless communication networks involve transmitters
(and receivers) scattered over some region.

Transmitter locations often form a homogeneous Poisson process
Φ = {Xi} with density λ on the plane R2

Boolean model: each transmitter Xi ∈ Φ has a circular transmission
range (ie forms a disc)

Each transmission radius can be a fixed constant or a radium variable

Very geometrical or intuitive model



Classic Boolean model

Figure : Green discs representing transmission ranges of transmitters in a wireless
network. Picture by B. Błaszczyszyn



Birth of continuum percolation: Gilbert model

1961: Birth of continuum percolation with Gilbert’s paper, which featured
a model with fixed transmission discs.
Create a undirected graph: two points X1 and X2 are connected if their
discs overlap the centres of each other
Gilbert showed a critical threshold (for density or disc radius) existed for
the infinite or “giant” component
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Another contender: Voronoi tesselation

Ci = {y ∈ R2 : |y − x | ≤ |y − Xi | : ∀Xi ∈ Φ}

Figure : Picture by B. Błaszczyszyn



A new germ-grain model: the SIR coverage model

Voronoi tessellation and Boolean Model are special cases of the general
germ-grain coverage model.
ectively

General germ-grain coverage model {(Xi , Ci )}
{Xi} are germs forming a point process Φ on R2

Ci = Ci (Xi ,Φ) are grains consisting of (possibly dependent) random
closed subsets of R2 .

Often Poisson point process forms the “germs”

Discs or Voronoi cells form the “grains” for the Boolean model or Voronoi
tessellation respectively

Baccelli and Błaszczyszyn (2001) introduced a new coverage model with
dependent grains.

SIR coverage model {(Xi , Ci )}, where each Ci is a SIR cell formed by
the SIR to be greater than some threshold τ

SIR coverage model is also called shot-noise coverage model in Chiu,
Stoyan, Kendall, Mecke (2013).



Signal-to-interference ratio (SIR)

Wireless network of transmitters {Xi} in R2 and a single (or “typical”)
user located at the origin o.

Ri is the power received o of a signal originating from a transmitter at
Xi ∈ R2 .

Performance metric is signal-to-interference-ratio (SIR) in relation to a
base station at Xi

SIR(Xi , o) =
Ri∑

j 6=i
Rj
, SINR(Xi , o) =

Ri∑
j 6=i

Rj + N

(Constant N ≥ 0 is negligible in high density networks, so consider SIR).

One important quantity: coverage probability of a single is defined as

Pc(τ) := P(max
i

SIR(Xi , o) > τ)

where τ is the (technology-dependent) SIR threshold



Standard models

Standard network model: base stations {Xi} positioned as a
homogeneous Poisson process Φ with density λ on R2

Standard propagation model:

Ri = Fi`(|Xi |) =
Fi

|Xi |β
,

`(x) = (|x |)−β is the path-loss/attenuation function for constant β > 2

Independent and identically-distributed (iid) random variables Fi

represent propagation effects such as multi-path fading ie signals
colliding with obstacles.

Fi is often assumed to be exponentially or log-normally distributed

Under this model, define the SINR cell as

Ci =

{
y ∈ R2 :

Fi`(|y − Xi |)
γ
∑

j 6=i Fj`(|y − Xj |) + N
≥ τ

}

where 0 ≤ γ ≤ 1 is an “interference cancellation factor” – depends on
the technology.



SIR cells for SIR threshold τ = 0.5

Figure : λ = 10, `(r) = (Kr)−β , K = 8000, β = 3. Picture by B. Błaszczyszyn



SIR cells for SIR threshold τ = 0.4

Figure : λ = 10, `(r) = (Kr)−β , K = 8000, β = 3. Picture by B. Błaszczyszyn



SIR cells for SIR threshold τ = 0.3

Figure : λ = 10, `(r) = (Kr)−β , K = 8000, β = 3. Picture by B. Błaszczyszyn



SIR cells for SIR threshold τ = 0.2

Figure : λ = 10, `(r) = (Kr)−β , K = 8000, β = 3. Picture by B. Błaszczyszyn



SIR cells for SIR threshold τ = 0.1

Figure : λ = 10, `(r) = (Kr)−β , K = 8000, β = 3. Picture by B. Błaszczyszyn



SINR coverage model links some classic stochastic geometry models

Lemma

A single user can be covered by (at maximum) k transmitters in the entire
network if 1/(k + 1) ≤ τ < 1/k

SIR cell:

Ci =

{
y ∈ R2 :

Fi`(|y − Xi |)
γ
∑

j 6=i Fj`(|y − Xj |) + N
≥ τ

}
When γ = 0 (no interference), the SINR cells are independent⇒
Boolean model approximations. Constant Fi gives Gilbert’s disc model.

When N = 0 (no noise) and β →∞ , then SINR cells converge to
Voronoi cells.

Playing with N → 0 and β →∞ , the SINR model becomes the
Johnson-Mehl model (for a simple Poisson birth process on R2 × [0, t)).



Percolation results for the SIR coverage model

Create a undirected graph: two points X1 and X2 are connected if at
both points their respective SIRs exceed some threshold τ
Dousse, Baccelli, and Thiran (2005) and Dousse, Franceschetti, Macris,
Meester, and Thiran (2006). Also see monograph on SINR percolation
by Franceschetti and Meester (2006)

.
in

te
rf

e
re

n
c
e
 c

a
n
c
e
lla

ti
o
n
 f
a
c
to

r

node density

Percolation domain

percolation

no percolation

no 
perco-
lation

Figure : Path-loss model: `(r) = min(1, r−3) . Plot by B. Błaszczyszyn

Increasing density λ may destroy the giant infinite component(s).



Tractable results for a single user: fading invariance

Under standard Poisson model with singular path-loss function
`(r) = r−β , Poisson mapping theorem says that the signal power values

Θ := {Ri} =

{
Fi

|Xi |β
: Xi ∈ Φ

}
form an inhomogeneous Poisson point process on the positive real line
with intensity measure

Q([t ,∞)) := λπE(F 2/β)t−2/β

Use exponential F and Laplace transforms, remove assumption
To a single user, a deterministic (or even random non-Poisson)
transmitter configuration φ = {xi} ⊂ R2 can still appear Poisson
Keeler, Ross, and Xia (2014) showed that as iid Fi → 0 (in distribution),
the point process of power values converges to an inhomogeneous
Poisson point process
For a single user, define the SIR point process on the positive half-line
R+ as

{Zi} :=

{
Ri

I − Ri
: Ri ∈ Θ

}
, (1)

where I =
∑

R−1
i is total interference in the network.



Tractable results for a single user: k -coverage probability

Theorem (Błaszcyszyn, Karray, Keeler 2015)

Under a homogeneous Poisson model with density λ and singular path-loss
function `(r) = r−β , the k-coverage probability of a single user is

P(k)
c (τ) =

d1/τe∑
n=k

(−1)n−k (n−1
k−1)

(2/β)n−1

τ
(2n)/β
n [C(β)]n

Jn,β (τn) ,

where τn = τ
1−(n−1)τ , C(β) = 2π

β sin(2π/β) , and for x ≥ 0 ,

Jn,β(x) =

∫
[0,1]n−1

n−1∏
i=1

v i(2/β+1)−1
i (1− vi )

2/β

n−1∏
i=1

[x + ηi ({vi})]

dv1 . . . dvn−1 (2)

where ηi ({vi}) := (1− vi )
∏n−1

k=i+1 vk .

J1,β(x) = 1 so for τ > 1 gives P(1)
c (τ) = 1/[τ 2/βC(β)]

J2,β(x) is a sum of two hypergeometric functions 2F1



SIR and the two-parameter Poisson-Dirichlet process

Define the signal-to-total-interference ratio or STIR process on (0, 1] as

{Z ′i } :=

{
Y−1

i

I
: Yi ∈ Θ

}
, Zi =

Z ′i
1− Z ′i

, Z ′i =
Zi

1 + Zi
(3)

For parameters 0 ≤ α < 1 and θ > −α, introduce a sequence of random
variables Ṽ1 = U1, Ṽi = (1− U1) . . . (1− Ui−1)Ui , i ≥ 2, where
U1,U2 are independent beta variables such that each Ui has
B(1− α, θ + iα) distribution.

∑∞
i=1 Ṽi = 1 with probability one.

Denote the decreasing order statistics of {Ṽi} by {Vi} such that
V1 ≥ V2 ≥ . . . .
Define the two-parameter Poisson-Dirichlet distribution with parameters
α and θ, abbreviated as PD(α, θ), to be the distribution of {Vi} .
See Pitman and Yor (1997) for interesting and useful results

Proposition (Błaszczyszyn and Keeler (2014))

The sequence {Z ′i } is equal in distribution to {Vi} for α = 2/β and θ = 0. In
other words, the STIR process {Z ′i } is a PD(2/β, 0) point process.



Summary and possible research directions

Summary:
For information theoretic reasons, Baccelli and Błaszczyszyn (2001)
introduced the SIR coverage model that bridges some well-known
models
Results exist on SIR (continuum) percolation by Dousse and friends.
To a single user under strong and independent fading, networks appear
Poisson or can be approximated with Poisson networks Keeler , Ross
and Xia (2014)
For single user and simple path-loss function, interesting SIR results
exist, many observed independently in physics (eg Ruelle’s cascade
model) and mathematics (eg work of Pitman and Yor).

Research directions:

Conditions for SINR model or purely geometric models.
Study multiple users/receivers and multi-hop scenarios
Dynamic situation with movement of transmitters and users
Introduce dependence into fading variables eg Gaussian fields
Use techniques from large-deviation theory to tackle the problem in the
high density setting



The End

Thank you.
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